
CONTENTS

alex-levesque.com

ELEC 271 - Lecture Notes
Digital Systems

Prof. Kleber Cabral • Fall 2025 • Queen’s University

Contents

1 Digital Hardware and Binary Numbers 3
1.1 Transistors . 3
1.2 Binary Numbers . 3

2 Logic Circuits 6
2.1 Variables and Functions . 6
2.2 Logic Gates and Circuits . 6

3 Boolean Algebra and Minterm/Maxterm 8
3.1 Venn Diagrams . 8
3.2 Synthesis using operators . 9

4 Multiplexer and VHDL introduction 11
4.1 Multiplexer Circuit . 11
4.2 Introduction to VHDL . 11

5 Transistor Switches 13
5.1 Logic Values and Voltage Levels . 13
5.2 Transistor Switches . 13

6 CMOS Logic Gates 15

7 Programmable Logic Devices 19

8 Karnaugh Maps (K-maps) 22
8.1 Solving using a K-map . 23

8.1.1 SOP Solution . 24
8.1.2 POS Solution . 25

9 Karnaugh Maps (cont.) 28
9.1 Incompletely Specified Functions . 28
9.2 Multiple-Output Circuits . 28
9.3 Multilevel Synthesis . 28

10 VHDL Examples 30

11 Number Representation in Digital Systems 31

1

http://alex-levesque.com

CONTENTS

12 Number Representation in Digital Systems (cont’d) 32
12.1 Addition . 32
12.2 Signed Numbers . 32

2

1 DIGITAL HARDWARE AND BINARY NUMBERS

1 Digital Hardware and Binary Numbers

Digital hardware, Moore’s law, technology trends, chip types, layers of abstraction,
design process, design flow for logic circuits, fixed point numbers and positional number
representation

Analog signal is not discrete values, ex: radio signal Digital signal relies on discrete
values, such as 1 or 0, on or off. A switch is basic element in implementing a digital system

1.1 Transistors

An NMOS (N-channel Metal-Oxide-Semiconductor) is a type of transistor used as a
switching element in digital systems

When the gate voltage VG is high, or equal to the supply voltage VDD, the NMOS acts
like a closed switch. When VG is low (0V), the NMOS acts as an open switch

A PMOS is the opposite. When the gate voltage is high, the PMOS acts like an open
switch. When the gate voltage is low, the PMOS acts as a closed switch.

Moore’s Law and Chips

This law states that the number of transistors on a chip is doubling every 18 months.
Some may predict the end of Moore’s Law, and yet it keeps going.

1.2 Binary Numbers

The general form for determining the decimal value of a number in base k is given by:
V alue = Σn−1

i=−mbik
i

n is the highest power of the base m is the number of fractional digits after the decimal
point

Conversion:

Each digit in a binary number represents a power of 2, depending on its position

To convert a binary number to decimal, multiply each digit bi by 2i, where i is the position

Example: (1010.01)2 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 8 + 0 + 2 + 0 + 0 + 0.25 = (10.25)2

Converting decimal to binary, we divide the number by 2 as many times as possible

3

1 DIGITAL HARDWARE AND BINARY NUMBERS

Example: Convert 23.375 to base 2:

Start with the integer part:

Then do the decimal part:

4

1 DIGITAL HARDWARE AND BINARY NUMBERS

Beyond base 2

The hexadecimal value 0xFF converts to: 0xFF = (15 ∗ 161)+ (15 ∗ 160) = 240+15 = 255

The 0x in front of the number indicates that the number is written in hexadecimal notation

5

2 LOGIC CIRCUITS

2 Logic Circuits

A logic function L(x) is a collection of signals x1, . . . , xn

2.1 Variables and Functions

The logical AND (∧) function serves for a series connection, where the function L(x1, x2) =
x1 ∗ x2

The logical OR (∨) function serves for a parallel connection, where the function L(x1, x2) =
x1 + x2

The logical XOR (⊕) outputs 1 if exactly one of the inputs is 1

XOR: A⊕B = (A ∧ ¬B) ∨ (¬A ∧B)

The logical XNOR (⊙) outputs 1 if both inputs are the same, this is the complement of
XOR

XNOR: A⊙B = (A ∧B) ∨ (¬A ∧ ¬B)

XOR/XNOR identity: x1(x2 ⊙ x3) + x1(x2 ⊕ x3) = x1 ⊕ x2 ⊕ x3

Example:

L(x1, x2, x3) = (x1 + x2) ∗ x3

2.2 Logic Gates and Circuits

We can use several gates to represent connectors

6

2 LOGIC CIRCUITS

So, we can draw a logic network into an equivalent logic circuit using these symbols.

7

3 BOOLEAN ALGEBRA AND MINTERM/MAXTERM

3 Boolean Algebra and Minterm/Maxterm

This is very similar to MTHE 217:

1 + 1 = 1

x+ x = x

x+ x̄ = 1

¯̄x = x

Duality: a dual of a Boolean expression is obtained by replacing all “+” operators with
“.” operators

Example: De Morgan’s theorem states that ¯(x+ y) = x̄ ∗ ȳ

We can also showcase DeMorgan’s theorem as follows:

An important result when simplifying a logic equation is x ∗ x̄ = 0

3.1 Venn Diagrams

We can intuitively how two expressions may be equivalent with Venn diagrams

8

3 BOOLEAN ALGEBRA AND MINTERM/MAXTERM

3.2 Synthesis using operators

Minterm (m): a minterm is a product (AND) term in which each of the n variables
appears once (ANDed product of literals)

Maxterm (M): a maxterm is the complement of minterm, a sum (OR) term in which
each of the n variables appears once (ORed sum of literals)

m̄i = Mi

In a three literal circuit, examples: m0 = x̄1 ∗ x̄2 ∗ x̄3 M4 = x̄1 + x2 + x3 m6 = x1 ∗ x2 ∗ x̄3

M6 = x̄1 + x̄2 + x3

If each product term is a minterm, the expression is called a canonical sum-of-products
(SOP)

If each sum term is a maxterm, the expression is called canonical product-of-sums (POS)

We can simplify a canonical SOP to a minimal-cost realization by reducing the number of
gates and reducing number of input variables

POS example:

f(x1, x2) = m0 +m1 +m3

¯f(x1, x2) = m2 = x1x̄2

¯̄f(x1, x2) = f = ¯(x1 ¯)x2 = x̄1 + x2 = M2

Simplification Tricks

9

3 BOOLEAN ALGEBRA AND MINTERM/MAXTERM

A+ CB = (A+B)(A+ C) A+ Āx = A+ x

If every case of two propositions is covered, let it = 1 Example: (x1x2+x̄1x2+x1x̄2+x̄1x̄2) =
1

10

4 MULTIPLEXER AND VHDL INTRODUCTION

4 Multiplexer and VHDL introduction

4.1 Multiplexer Circuit

This is a circuit that chooses data from exactly one of the number of possible input sources

If we are given two sources of data x1, x2, an output f , and a select input control signal s,
the result of f depends on s

Example:

f = (I0 ∗ S̄) + (I1 ∗ S), or formally, MUX(S;A,B) = SA+ SB

If S = 0, f = I0 If S = 1, f = I

The numbers written inside the block represent which input is connected to the output
depending on the value of s

Example:

MUX1 = (x2;x3, x3) = x2x3+x2x3 = x2⊕x3 MUX2 = (x2;x3, x3) = x2x3+x2x3 = x2⊙x3

MUX3 = (x1; x2 ⊕ x3, x2 ⊙ x3) = x1 ⊕ x2 ⊕ x3

4.2 Introduction to VHDL

Entity: Defines the interface of a circuit block (its input and output ports)

11

4 MULTIPLEXER AND VHDL INTRODUCTION

Architecture: Describes the internal implementation or behaviour of the entity

Signal assignment: Defines how outputs relate to inputs, often using logic equations

entity example-2 IS
port (x1, x2, x3, x4: in bit;

f, g: out bit);
end entity example-2;

architecture LogicFunc OF example-2 IS
begin

f <= (x1 AND x3) OR (x2 AND x4);
g <= (x1 OR NOT x3) AND (NOT x2 OR x4);

end LogicFunc;

Example-2 is a circuit block with four input signals and two output signals

architecture: describes how the outputs f and g are logically derived from the inputs.
The assignments to f and g are called concurrent signal assignments (they happen
simultaneously in hardware)

12

5 TRANSISTOR SWITCHES

5 Transistor Switches

5.1 Logic Values and Voltage Levels

Digital systems use binary values: 0 (low voltage, ~0V) and 1 (high voltage, e.g., 5 V)

Positive logic: 0 = low, 1 = high. This is the usual system.

The noise margin is the amount of “buffer” a logic signal has against electric noise before
it risks being misinterpreted as the wrong logic level.

• High-state margin: NMH = VILmax − VOLmax

NMH tells us how much noise a high-level signal can tolerate before being misread as low.
It is the difference between the “maximum voltage guaranteed to be recognized as logic 0”
and “maximum output voltage when driving logic 0”

• Low-state margin: NMH = VOHmin
− VIHmin

NML tells us how much noise a low-level signal can tolerate before being misread as
high. It is the difference between the “minimum output voltage when driving logic 1” and
“minimum voltage guaranteed to be recognized as logic 1”

Below: VSS is the lowest voltage VDD is the highest voltage

5.2 Transistor Switches

Logic gates are built from metal oxide semiconductor field-effect transistor (MOSFET),
with a N-channel (NMOS) and P-channel (PMOS)

VS is the source voltage, where charge carriers enter the channel VG is the gate voltage,
applies a voltage to control whether current flows VD is the drain voltage, where charge
carriers leave the channel VDD is the positive supply voltage

13

5 TRANSISTOR SWITCHES

AND and OR gate using NMOS

14

6 CMOS LOGIC GATES

6 CMOS Logic Gates

CMOS: Complementary MOS (both NMOS and PMOS)

CMOS is popular because no power is dissipated under steady state conditions (no current
flows when the input is either low or high)

In the image below, the pull-up network (PUN) is made of PMOS transistors and
connects the output node to VDD when the logic function requires a 1

The pull-down network (PDN) is made of NMOS transistors and connects the output
node to Ground (0V) when the logic function requires a 0

General formula:

PUN = PMOS transistors -> Vdd PDN = NMOS transistors -> GND

CMOS Examples

A NOT gate reverses the input logic state.

When the input Vx = 0, T1 is ON and connects VDD to Vf When the input Vx = 1, T2 is
OFF and disconnects

15

6 CMOS LOGIC GATES

A NAND gate outputs the opposite of an AND gate, f = x1x2

Here, when x1 and x2 are 0, the PUN is on and the signal is being pulled up to VDD,
not the ground

A NOR gate outputs the opposite of an OR gate, f = x1 + x2, where the PMOS
transistors are placed in series and the NMOS transistors are placed in parallel

16

6 CMOS LOGIC GATES

An AND gate is mote complex than one may think. If you try to directly wire PMOS/N-
MOS to match AND truth table, you get something messy. It is better to treat AND as
NAND + NOT

17

6 CMOS LOGIC GATES

Similarly, an OR can be obtained from a NOR followed by a NOT

18

7 PROGRAMMABLE LOGIC DEVICES

7 Programmable Logic Devices

Programmable Logic Devices (PLDs) is a general-purpose chip for implementing logic
circuits, where the input is logic variables and the output is logic functions

A Programmable Logic Array (PLA) is a type of logic device with an AND plane
followed by an OR plane

Inputs can be fed into the AND plane to form any desired set of product terms, and
then fed into the OR place, where they can be combined to form SOP expressions for the
outputs

A Programmable Array Logic (PAL): only programmable AND array, for cost reason
and better performance, but less flexible

19

7 PROGRAMMABLE LOGIC DEVICES

A Field-Programmable-Gate-Array (FPGA) is for larger logic circuits, and do not
contain AND or OR planes

FPGA chips contain three main type of resources: logic blocks, I/O blocks, and intercon-
nection wires and switches

Each logic block has a small number of inputs and outputs, with lookup tables (LUT)
being the most common implementation. Commercial FPGAs typically use LUTs with
up to five inputs.

20

7 PROGRAMMABLE LOGIC DEVICES

A LUT is essentially a small block of memory:

• the input bits serve as the address

• the stored bit at that address is the output (0 or 1)

Because the LUT stores the complete truth table for its inputs, it can represent any
Boolean function

Python analogy example:

XOR function implemented as a LUT
lut = {

(0, 0): 0,
(0, 1): 1,
(1, 0): 1,
(1, 1): 0

}

print(lut[(1, 0)]) # Output: 1

21

8 KARNAUGH MAPS (K-MAPS)

8 Karnaugh Maps (K-maps)

A Karnaugh Map provides a systematic way of optimizing logic functions. It is an
alternative to the truth table and allows easy discover of groups of minterms for which
f = 1 can be combined into single terms

Key point: Allows to replace two minterms that differ in the value of one variable with
a single product term that does not include that variable

Building a Karnaugh Map:

Two variables:

Three variables:

22

8 KARNAUGH MAPS (K-MAPS)

Four variables:

8.1 Solving using a K-map

Strategy: To find as few as possible and as large as possible groups of 1s that cover all
cases where the function has a value of 1

Cost: The number of gates + the number of inputs to the gates

4 literals + 2 AND gates + 1 OR gate + 2 NOT gates

Literal: each appearance of variable (uncomplemented or complemented) in a product
term

Implicant: A product term that indicates the input valuations for which a given input is
equal to 1 (essentially a group of 1’s)

Prime Implicant: A group of 1’s that cannot be combined into a larger group of 1’s
(maximal rectangle of 1’s)

23

8 KARNAUGH MAPS (K-MAPS)

Essential Prime Implicant (EPI): A prime implicant that covers at least one 1 in the
K-map that no other prime implicant covers. These are must-have groups in your final
simplified function.

Cover: A collection of implicants that account for all valuations for which a given function
is equal to.

8.1.1 SOP Solution

Select K-map according to number of variables

24

8 KARNAUGH MAPS (K-MAPS)

Identify minterms or maxterms as given in the problem and assign them to the corre-
sponding box

Put 1’s in blocks of K-map respective to the minterms (0’s elsewhere)

Make rectangular groups of 1 blocks containing total terms in power of two like 2,4,8 and
try to cover as many elements as you can in one group

From the groups made in step 5 find the product terms and sum them up for SOP form

8.1.2 POS Solution

Select K-map according to number of variables

25

8 KARNAUGH MAPS (K-MAPS)

26

8 KARNAUGH MAPS (K-MAPS)

Identify minterms or maxterms as given in the problem and assign them to the corre-
sponding box

For POS put 0’s in blocks of K-map respective to the maxterms (1’s elsewhere)

Make rectangular groups of 0 blocks containing total terms in power of two like 2,4,8 and
try to cover as many elements as you can in one group

Take the complement of the groups and sum the literals. Ex: C ′DB = (C +D′ +B′)

From the groups made in step 5 find the product terms and sum them up for POS form

27

9 KARNAUGH MAPS (CONT.)

9 Karnaugh Maps (cont.)

9.1 Incompletely Specified Functions

When an input combination can’t ever happen, it’s called a don’t-care condition A function
with one or more don’t-care conditions is called incompletely specified

Ex: Allowed inputs for x1 and x2 are 00, 01, 10. (x1, x2) = 11 is a don’t care

We can treat “d” in a k-map as either 0 or 1, which is useful when trying to find a
minimum-cost function

9.2 Multiple-Output Circuits

A circuit can have multiple outputs f1, f2, . . . , fn

Example: f1 = x1x3 + x1x3 + x2x3x4 and f1 = x1x3 + x1x3 + x2x3x4

The cost of each is 14, and would cost 28 in two circuits. A less-expensive realization is
possible if the two circuits are combined into a single circuit with two outputs

We can utilize that the first two product terms are identical to build:

The combined circuit above shows a cost of 22, which is less than the cost of two separate
circuits (28)

9.3 Multilevel Synthesis

In some cases, multilevel circuits may reduce the cost of implementation, even if fan-in is
not a problem at the cost of longer propagation delay

28

9 KARNAUGH MAPS (CONT.)

Before, logic functions were implemented in SOP or POS form. These are two-level
circuits: - SOP -> first-level AND gates feeding a second-level OR - POS -> first level
OR gates feeding a second-level AND

As the number of inputs grows, two-level circuits can create gates with very large fan-in
(too many inputs)

Multilevel synthesis fixes this issue with smaller fan-in gates per stage, and several more
stages to decompose the function into

Example:

f = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7 is in SOP form. This needs gates with high
fan-in (3 or 4 input ANDs, a 4-input OR)

We can factorize into f = (x1x6 + x2x7)(x3 + x4x5), which is now 2 LUTs (multilevel)

This is multilevel because we have a three levels (ANDs in each parentheses, one OR in
each parentheses, and one AND to sum them all up).

29

10 VHDL EXAMPLES

10 VHDL Examples

Use ieee.std'logic' library for basic logic data types

ENTITY declares the module’s interface (i/o), and func1 takes three inputs, produces
one input

Expression: f is a SOP equation showing minimized logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY func1 IS
PORT (

x1, x2, x3 : IN STD_LOGIC;
f : OUT STD_LOGIC

);
END func1;

ARCHITECTURE LogicFunc OF func1 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND NOT x3) OR
(NOT x1 AND x2 AND NOT x3) OR
(x1 AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND x2 AND NOT x3);

END LogicFunc;

Use the IEEE 1164 value system, for values like 'U' (uninitialized), 'X' (unknown), '0' (logic
0), '1' (logic 1), 'Z' (high impedance), 'W', 'L', 'H' for weak/strong drive states.

30

11 NUMBER REPRESENTATION IN DIGITAL SYSTEMS

11 Number Representation in Digital Systems

Unsigned numbers: only positive values Signed numbers: can be positive or negative
Each position in a number has a value based on the base (radix), e.g., binary (base 2),
decimal (base 10)

Base r: V = Σn
i=0bi · ri

We can shorten binary into other bases, example: 1010102 = (1012)(0102) = (1 · 22 + 0 ·
21 + 1 · 20)(0 · 22 + 1 · 21 + 0 · 20) = (58)(28) = 528 ## Addition of Unsigned Numbers

A half-adder adds two single bits (x,y), and outputs: Sum(s) : s = x⊕y Carry(c) : c = x·y

31

12 NUMBER REPRESENTATION IN DIGITAL SYSTEMS (CONT’D)

12 Number Representation in Digital Systems (cont’d)

12.1 Addition

incomplete

12.2 Signed Numbers

32

	Digital Hardware and Binary Numbers
	Transistors
	Binary Numbers

	Logic Circuits
	Variables and Functions
	Logic Gates and Circuits

	Boolean Algebra and Minterm/Maxterm
	Venn Diagrams
	Synthesis using operators

	Multiplexer and VHDL introduction
	Multiplexer Circuit
	Introduction to VHDL

	Transistor Switches
	Logic Values and Voltage Levels
	Transistor Switches

	CMOS Logic Gates
	Programmable Logic Devices
	Karnaugh Maps (K-maps)
	Solving using a K-map
	SOP Solution
	POS Solution

	Karnaugh Maps (cont.)
	Incompletely Specified Functions
	Multiple-Output Circuits
	Multilevel Synthesis

	VHDL Examples
	Number Representation in Digital Systems
	Number Representation in Digital Systems (cont’d)
	Addition
	Signed Numbers

